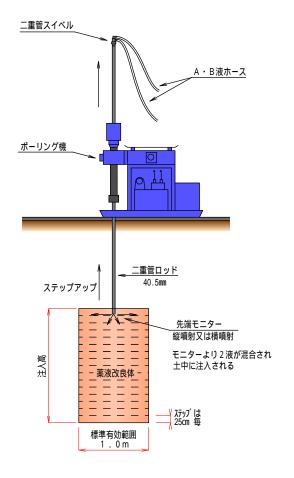
「二重管ストレーナ工法」とは、広く普及している薬液注入工法の中で最も一般的な工法です。

二重管ロッドを土中に削孔し、外管と内管よりそれぞれ主剤・硬化剤を同時に圧送し先端モニターにより混合された薬液が土中に浸透することで改良を行います。使用される薬液は非常に多くの種類がありますが、大きく分けて止水目的の「溶液型」と強度増加を期待できる「懸濁型」に分けられます。さらに環境に優しい「中性タイプ」や、構造物基礎の補強や建物の沈下修正に用いられる「恒久性タイプ」などがあり、薬液は硬化時間を任意にコントロールでき、土質・目的に合わせ数秒(舜結)〜数十分(緩結)までの範囲で設定できます。また、硬化時間の異なる2種類の材料を用いてN値の高い砂層などに浸透注入することも可能です。

地盤改良工法の中では最も小規模で経済的な工法です。



■主な用途

- ・シールド発進・到達部の地盤改良
- ・土留壁の欠損部防護
- ・掘削底盤の止水
- ・ボーリングによる充填注入
- ・建物の基礎の補強、沈下修正

その他、様々な地盤改良に適用できます。

概要図

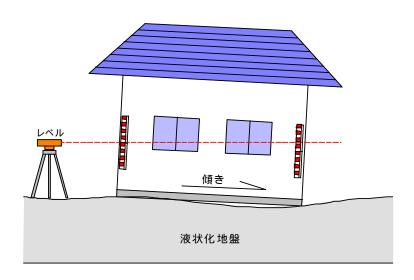
■二重管ストレーナー(単相タイプ)

=- <u>±</u> =\(\(\frac{1}{2}\)\)								
土質区分		N値		間隙	溶液型		懸濁型	
					充填率	注入率	充填率	注入率
				ρ	α		α	
				(%)	(%)	(%)	(%)	(%)
粘性土	1	ゆるい	0~4	70	55	38.5	50	35.0
	2	中位	4~8	60	50	30.0	45	27.0
	3	絞った	8~15	50	30	15.0	25	12.5
砂質土	1	ゆるい	0~10	50	80	40.0	70	35.0
	2	中位	10~30	40	80	32.0	70	28.0
	3	絞った	30以上	30	70	21.0	60	18.0
砂礫土	1	ゆるい	10~30	50	80	40.0	70	35.0
	2	中位	30~50	35	80	28.0	70	24.5
	3	絞った	50以上	25	80	20.0	70	17.5

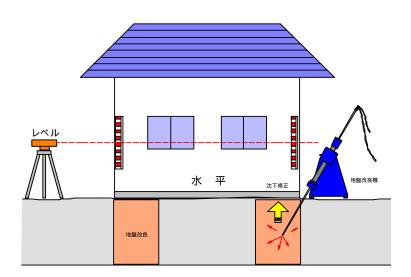
■二重管ストレーナー(複相タイプ)

		間隙	充填率	注入率
土質区分	N値	ρ	α	
		(%)	(%)	(%)
粘性土	0~4	70	40	28.0
	4~8	60	40	24.0
砂質土	0~30	45	90	40.5
	30以上	35	90	31.5
砂礫土	0~50	40	90	36.0
	50以上	35	90	31.5

■二重管ストレーナー(複相タイプ) 瞬結:緩結比率表


		1 7 7 7 11 12 12 12 12 1
土 質	瞬結:緩結比率	摘 要
粘性土	1:0	目的(地下地盤・止水等)に
	1:1	より選定する。
砂質土	1:1~2	ゆるい N値 0~10
	1:2~3	中 位 N値 10~30
	1:3~4	絞った N値 30以上
砂礫土	1:0.5	細粒分の少ない場合
	1:1~2	細粒分が多い場合・止水など

二重管ストレーナー工法による建物沈下修正


液状化により建物が傾く

地震によって地盤が液状化し、地盤沈下とともに 建物が不同沈下する

薬液を注入して建物を沈下修正

建物基礎下の液状化地盤へ恒久性のある薬液を注入し 沈下した建物を水平に修正する

<お問い合わせ>

株式会社水明グラウト

http://www.suimei-g.co.jp E-meil:info@suimei-g.co.jp 〒343-0827 埼玉県越谷市川柳町5-15-1 tel:048-940-0042 fax:048-940-0043

